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Overview

Talk goal: to explain and motivate the language design

challenges in probabilistic programming languages.

1. Introduction and overview of probabilistic programming

languages (PPLs): programming languages with probabilistic

semantics

2. Roulette: a fast and expressive PPL based on Rosette

3. Conclusion: perspectives on making PPLs more widespread

and usable
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Two arguments for probabilistic programming languages

PL

1. It is useful to verify programs.

2. Many kinds of programs have

inherent probabilistic uncertainty.

3. We need programming languages

with probabilistic semantics to

give a semantics to these

programs.

AI

1. We want to create agents that

reason rationally about the world.

2. To do this, we need a language

for describing the world to a

computer.

3. The world is too complicated to

describe without probabilities.

4. We need programming languages

with probabilistic semantics.
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What are probabilistic programming languages (PPLs)?

Programming with Roulette [16]: a new probabilistic

programming language in Racket based on Rosette

#lang roulette/example/disrupt

> (flip 0.4)

(pmf | #t 7→ 0.4 | #f 7→ 0.6)
• (flip 0.4) introduces

randomness, #t with

probability 0.4 and #f with

probability 0.6.

• Outputs a probability mass

function (PMF), associates

values to probabilities
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Programming with probabilities: network reachability

Goal: Compute probability an

incoming packet reaches R4:

• Packet forwards from R1

uniformly at random

• Each edge fails with the

annotated probability
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Programming with probabilities: network reachability

> (if (flip 0.5) ; if true, forward to R2

(and (flip 0.96) (flip 0.99))

(and (flip 0.92) (flip 0.98)))

(pmf | #t 7→ 0.926 | #f 7→ 0.074)
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Programming with probabilities: network diagnosis

Now suppose we want to perform

network diagnosis.

We observe a packet does not

successfully reach R4. What is the

probability that the R1 – R4 link failed?
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Programming with probabilities: network diagnosis

> (define r1->r2 (flip 0.96))

> (define reaches (if (flip 0.5) ; if true, forward to R2

(and r1->r2 (flip 0.99))

(and (flip 0.92) (flip 0.98))))

> (observe! (not reaches))

> r1->r2

(pmf | #t 7→ 0.703135 | #f 7→ 0.296865)
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Roulette is quite expressive: Demo #1

Add 1 to each element of the list with probability 1/2

> (define my-list ’(1 2 3))

> (map (lambda (x)

(if (flip 0.5)

x

(+ x 1)))

my-list)

(pmf | ’(2 2 4) 7→ 0.125

| ’(2 3 3) 7→ 0.125

| ’(2 3 4) 7→ 0.125

| ’(1 3 4) 7→ 0.125

...
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Roulette is quite expressive: Demo #2

Compute probability that sum of list is even

(define my-list ’(1 2 3))

(define (add1-randomly l)

(map (lambda (x)

(if (flip 0.5)

x

(+ x 1)))

l))

(define (sum-list l)

(foldr (lambda (x acc) (+ x acc))

0 l))

> (equal? (modulo (sum-list (add1-randomly my-list)) 2)

0)

(pmf | #t 7→ 0.5 | #f 7→ 0.5)
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Some applications of PPLs, real and imagined

• Teaching probability

• Network verification [9, 19]

• Medical diagnosis

• Scientific discovery

• Differential privacy [18, 1, 6]

• Fraud detection

• Verifying cryptography

• Randomized algorithms

• (Verified) machine learning

• Markov decision

processes [12]

• Pharmaceuticals

research [17]

• Social sciences [10]

• Content generation for

games [15]

• ...

There is high demand for

effective PPLs!
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The central challenge: scalability

Probabilistic inference (evaluating semantics) is computationally

hard even for very restricted languages.

e ::= (if g thn els) | (flip θ) | (let id e1 e2) | id

Even for this restricted lan-

guage, inference is #NP-

hard! Fairly easy reduction

to SAT. 11



Scaling PPLs Up: Inference

Hope: Inference is worst-case intractable, but it is not

always intractable: real programs have structure.

1. Identify classes of programs for which inference is tractable.

• Type systems, static analysis, programmer discipline, etc.

2. Develop inference algorithms that exploit this tractability.

3. Develop systems that deploy the correct inference algorithm

to problems with the right kinds of structure.
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Scaling Inference:

Design and Implementation of Roulette



Inference landscape: Enumeration

• Simplest idea: exhaustively enumerate all the possible values

for each random variable

• Easily implemented in Haskell using the probability (or Giry)

monad

newtype Dist a = Dist [(a, Double)]

dflip :: Double -> Dist Bool

dflip f = Dist([(True, f), (False, 1 - f)])

my_val :: Dist Bool

my_val =

do

x <- (dflip 0.5);

y <- (dflip 0.5);

pure (x && y)

> my_val

Dist [(True,0.25),(False,0.25),(False,0.25),(False,0.25)]

Expressive (all of Haskell!)

but slooooooow!

13



Inference landscape: Direct Sampling

• Also simple idea: when you encounter a flip, sample a value

from the Bernoulli probability distribution. Run program many

times, take average

• Answers are now approximate. Scales better (sometimes!),

weaker guarantees

• Definitely the most common approach to inference
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Expressive, exact, efficient

It is very hard to make a PPL that is:

1. Expressive: Programming in the language should feel normal.

Few weird restrictions.

2. Exact: The programmer should get exact deterministic

answers to their queries

3. Efficient: Fast enough to be practically useful. As fast as

specialized solvers?

This is what we want Roulette to do.
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How Roulette happened

“Lecture 6: Dice is a

probabilistic programming

language that works by

compiling programs into

logical formulae and

performing weighted

model counting...”

Cameron Moy: Hey, that

sounds a lot like what

Rosette does!
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Tractability–Expressivity Tradeoff

Expressive Language Tractable Language

• Inference is

undecidable

• Continuous

distributions

• General recursion

• ... other features

• Middle-ground:

decidable

inference, but

high complexity

• Sure termination

• Typically discrete

• ... more?

• Tractable

probabilistic

models (TPMs):

Inference is polytime

in size.

• Highly restrictive:

an assembly

language (looks like

ANF)

• Examples: binary

decision diagrams

(BDDs), generating

functions, ...

17



Approach: Inference-via-Compilation

High-level PPL Tractable PPL

• Separate inference implementation from language design

• High-level language has ergonomic features, pleasant to

program in

• Target language captures problem-specific structure

• Compiler may be expensive, inference cost is amortized

• Develop new tractable target languages that enable new

higher-level language features

• Increasing number of examples: Dice [11, 8], ProbLog [7],

SPPL [7], generating functions [13], ...
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Roulette: an expressive, exact, and efficient PPL

Probabilistic Subset of Racket

• Discrete random variables

• General recursion (sure

termination)

• Macros

• Mutable state

• General datatypes (recursive,

higher-order, ...)

• Interop with Racket

Tractable PPL

Knowledge compi-

lation

• High-performance exact inference: essentially as fast as

state-of-the-art exact inference for Bayesian networks

• Based on Rosette [21], implemented as a #lang
19



Roulette by Example: Symbolic Unions

Step 1: Run a Roulette program under abstract semantics ( ⇚ )

to a symbolic union and weight map.

(define f1 (flip 0.4))

(define f2 (flip 0.7))

(or f1 f2)

⇚

[
f1∨f2 : #t,¬(f1∨f2) : #f

]
Literal ℓ w(ℓ)

f1 0.4

¬f1 0.6

f2 0.7

¬f2 0.3

• A symbolic union is a list of Racket values guarded by logical

formulae [21].

• Racket operations are lifted to operate on symbolic unions.
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Roulette by Example: Symbolic Unions

Another example:

(define x0 (flip 0.5))

(define x1 (flip 0.5))

(+ (if x0 2 3)

(if x1 3 4))
⇚

[
x0 ∧ x1 : 5,

(¬x0 ∧ x1) ∨ (x0 ∧ ¬x1) : 6,

(¬x0 ∧ ¬x1) : 7
]

Literal ℓ w(ℓ)

x1 0.5

¬x1 0.5

x2 0.5

¬x2 0.5
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Roulette by Example: Symbolic Unions

22



Snippet of full abstract semantics

ρ̂ ⊢ (e, σ̂,w) ⇚ (v̂ , σ̂
′,w ′, ψ)

• In (abstract) environment ρ̂

• The program e with store σ̂ and weight map w

• Runs to value v̂ , new store σ̂′, new weight map w ′, and

asserting formula ψ (for conditioning)
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Snippet of full abstract semantics

Simplified flip rule with constant parameter r :

α fresh

ρ̂ ⊢ ((flip r), σ̂,w) ⇚ ([α : #t,¬α : #f], σ̂,w [α 7→ r,¬α 7→ 1− r ], T)

ρ̂ ⊢ (e, σ̂,w) ⇚ (v̂ , σ̂
′,w ′, ψ)
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Snippet of full abstract semantics

ρ̂ ⊢ (e, σ̂,w) ⇚ (v̂ , σ̂
′,w ′, ψ)
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Computing probabilities

• The weight of a model w(m) is the product of the weights of

each literal in the model: w(m) =
∏

ℓ∈m w(ℓ)

• The weighted model count WMC(φ,w) is the weighted sum of

the models of φ:

WMC(φ,w) =
∑
m|=φ

w(m)
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Computing probabilities

Theorem 5.1, very informal: weighted model counting of the

symbolic union computes the correct probabilities.

(define f1 (flip 0.4))

(define f2 (flip 0.7))

(or f1 f2)

⇚

[
f1∨f2 : #t,¬(f1∨f2) : #f

]
Literal ℓ w(ℓ)

f1 0.4

¬f1 0.6

f2 0.7

¬f2 0.3

To compute the probability that the program evaluates to #t,

compute the WMC of the guard for that value:

WMC(f1 ∨ f2) = 0.4× 0.7 + 0.4× 0.3 + 0.6× 0.7 = 0.82

27



Scalable inference

• We’ve reduced Roulette inference to performing WMC

• Now we can deploy specialized weighted model counting tools!

• Rich catalog of tools for this, similar to SAT!

Historical context: inference via weighted

model counting is a state-of-the-art ap-

proach for exact inference in discrete

Bayesian networks, goes back to Chavira

and Darwiche [4]
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Knowledge compilation

• Step 2: compile formulae to binary decision diagrams

(BDDs), which support linear-time weighted model counting[
x0 ∧ x1 : 5,

(¬x0 ∧ x1) ∨ (x0 ∧ ¬x1) : 6,

(¬x0 ∧ ¬x1) : 7
]

Literal ℓ w(ℓ)

x1 0.5

¬x1 0.5

x2 0.5

¬x2 0.5

⇝

Compile

guard

for 6

The RSDD knowledge com-

pilation library: https:

//github.com/neuppl/rsdd
29
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Roulette is fast

Slice of benchmarks: some challenging large Bayesian networks

(many thousands of flips!)

Roulette Dice (2024) Dice (2020)

Benchmark BDD Size Time (ms) BDD Size Time (ms) BDD Size Time (ms)

cancer 13 2 15 49 28 19

survey 46 4 48 29 73 18

alarm 981 42 672 308 1366 30

insurance 75594 395 44,846 643 101047 148

hepar2 1,967 140 1969 230 3936 32

hailfinder 33,211 596 – – 65386 428

pigs 19 255 25 417 35 48

water 39146 200 33,226 454 51952 16083

munin 10,307 2400 3704 24839 11977 1,605
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Roulette team

Cameron Moy Jack Czenszak John M. Li Brianna Marshall
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Growing Roulette



Dimensions of growth

• More language expressivity
• More kinds of probability distributions (continuous)

• Queries beyond inference: optimization [5], causality

• More inference strategies
• Different backends, approximate inference

• Language interoperation

• Combining deductive reasoning with inference

• Beyond probabilities
• Weighted/quantum programming

• Usability
• Generalizing symbolic profilers [3]

• Type systems for guaranteed tractability

• Applications
• Teaching a course on probability using Roulette

• Property-based testing?

• Differential privacy

• ???
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Multi-language probabilistic programming

Hope: Programs are heterogeneous and different parts

have different tractable structure we can exploit separately.

• MultiPPL: language interoperation for PPLs [20]

• Orange language is sampled, purple language is exact (like

Roulette, but not integrated yet)

• Goal: Be able to use different inference algorithms (runtimes)

for different parts of the program

Sam Stites 33



Scaling PPLs Up: Deductive Reasoning

• Sometimes (often?) automated inference can’t scale! What

do we do then?

• Need proof rules to reason about program’s behavior

deductively (manually).

• Eventually, this can interact with automated inference
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Probabilistic Separation Logics (a taste)

Hope: Probabilistic programs have modular structure for

decomposing reasoning into sub-programs.

• Idea: generalize separation logic to probabilities! [2]

• Our approach: Lilac, a measure-theoretic separation logic for

probability [14]

(define x (flip 0.5))

{x ∼ bern 0.5}
(define y (flip 0.5))

{x ∼ bern 0.5 ∗ y ∼ bern 0.5}

• Separating conjunction (∗) denotes separation of probability

spaces, implies probabilistic independence

John M. Li 35



Conclusion



Theme: PPLs at the intersection of PL and AI

PL

• Deductive reasoning, program

logics

• Formal verification

• Language interoperability

• Formal semantics

• Relative expressivity of languages

AI

• Scalable inference techniques

• Probabilistic modeling

• Tractable probabilistic models

• Broad application domains

(medicine, science, robotics)
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Why aren’t we all using PPLs yet? Open challenges

1. Scalability, obviously: it’s still too easy to write programs
that don’t scale.

• Need more systematic benchmarking and perhaps open

competitions, similar to SAT competition, to measure progress.

• Broaden applications so we have more benchmarks. Drive

language design towards problems that matter.

• Stronger guarantees on inference performance and correctness.

Perhaps mechanized in a proof assistant.

• Contentious claim: we currently over-rely on approximate

inference, not enough focus on exact inference.
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Why aren’t we all using PPLs yet? Open challenges

1. Scalability

2. Usability: languages are hard to use and programmers don’t
know how to use them.

• Leaky abstractions/impedence mismatch: programmers need

to know too much about how inference is implemented. Need

cost models to help programmers understand when their

programs don’t scale and debug performance issues.

• Inference diagnostics and debugging tools, profilers.

• Goal: using a PPL in a classroom to teach undergraduates.
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Links and more resources

• OPLSS course on probabilistic programming:

https://www.khoury.northeastern.edu/home/

sholtzen/oplss24-ppl/

• Roulette source:

https://github.com/camoy/roulette/

• Seminar course I taught on PPLs:

https://neuppl.github.io/CS7470-Fall23/
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Extra slides



Bayesian learning

Flip two coins and observe that at least one of the two coins is #t.

What is the probability that the first coin is #t?

> (define coin1 (flip 0.5))

> (define coin2 (flip 0.5))

> (observe! (or coin1 coin2))

> coin1

(pmf | #t 7→ 0.666667 | #f 7→ 0.333333)

Possible worlds (enumeration):

• coin1 = #t, coin2 = #t

• coin1 = #f, coin2 = #t

• coin1 = #t, coin2 = #f

• coin1 = #f, coin2 = #f
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